Session 3
Complex Patterns
Create a new folder and place your libraries into it. Open up Geany and create a new file called start.py in the same folder. Type the following into start

#! /usr/bin/env python3
from blink import blink
while True:
 blink(1)
 blink(2)
 blink(3)
 blink(4)
 blink(5)
 print("Start again")
You should understand all this code. It lights up the yellow light for an increasing longer time and then repeats the sequence. You could just build complex light sequences using just these commands, however you will be writing blink a lot and might get confused in a long sequence.
Now let’s tackle how to write a long sequence. Using your current knowledge the only way to do this is to write blink many times. However with a bit more Python knowledge a much easier way opens up.
Lists
Programming languages have solved the problem of sequences by creating a data type called an array. In Python there are a number of versions of an array (sets, tuples, dictionaries and lists are the most common) and the one we will use in this course is the List.
A List is a simple sequence of data separated by commas. So
seconds = [1, 2, 3, 4, 5]
is a List. seconds is the name of the List and the sequence is defined using []. Inside the List, each element must be a Python data type, in this case we are using Integers. Now that we have a List Python has some very powerful tools to work with Lists. The first tool is a for loop.
You have seen a while loop (though we have currently only used these to make infinite loops), the other type of loop in Python is a for loop.
The difference between them is:
while loops – used where you work out where the end is as you go, these loops keep going until the end condition occurs.
for loops – these move through the sequence once and have a definite end. for loops have an added bonus of making each element of the sequence available to use
So let’s use a for loop to move through the seconds sequence. The code is
for second in seconds:
 blink(second)
Once you have tried this out let’s work out how it works.
for second in seconds:
for is a Python key word and is use to create the for loop. It means that we are going to move through a sequence doing something with each element at a time.
second is a variable name that will only exist inside the for loop. It will change value each time through the loop. The first time it will be the first element of the List, in this case 1, the second time the second element in the List, in this case 2 etc.
in is a Python key word which means that we are going to work on the elements of the List that is provided. It can be used in expressions, in for loops and in if/while statements.
seconds is the name of the List which contains the elements.
: this starts the block of code which will run each time through the for loop. Once this block of code has finished running the for loop will fetch the next element in the List.
for loops must have a sequence like a List to work with (technically they require an iterable data structure), however in Python many things can act as Lists, including Strings, which we will work with later.
Now we have a way to move through Lists we can create multiple sequences. Let’s create a second sequence
seconds2 = [8, 6, 8, 4, 1]
Now to run both sequences we need two for loops

for second in seconds:
 blink(second)
for second in seconds2:
 blink(second)
This breaks a major principle of programming, Don’t Repeat Yourself. Both for loops use identical code with one small change. This is a classic case of repeated code. Many beginner programmers would be tempted to copy and paste the code, but this is a bad idea since it means that if you have errors in your code, you are copying the errors. When you come to fix the error you must remember where the code is. In small programs this is not such a problem, however imagine you had 1000s of lines of code.
So how do we fix this? If you need the same thing in two places in your code, create a function and call the function in both places. So let’s do that.
def sequence(seq):
 for second in seq:
 blink(second)
while True:
 sequence(lights)
 sequence(lights2)
This code should be clear to you, if not read you sessions notes for the first two sessions again.
This works well and allows you to build complex sequences of flashing lights. One issue is where should the function sequence be, should it be here or in the blink library? The answer to that is whether you will only use it once or many times. If you think it might be useful many times, then place it in the blink library.

Creating sequences
Sometime you want to create your own sequence and Python has some excellent tools to do this. One is called List Comprehension, but that is beyond the scope of this course, you could look this up if you are interested. However the basic technique is to use a for loop to run the code a certain number of times and then inside the loop to build a String or a List with what you want. Type in the following code
#! /usr/bin/env python3
for x in range(10):
 print(x)
and run it. The only thing new here is the range function which produces a sequence of numbers for the for loop, you can’t actually use that sequence directly. You could look up the way the range function work to get more information about it. The main aim of the range function is to run the loop that many times, giving you a different number each time that you could use if you wish. Inside the loop you can do anything you like.
There are two basic ways to build a sequence, build a List and build a String. Both of these are usually done inside the for loop. To build a list you use the .append function of Lists, to build a String you use String concatenation which uses the + sign. With both these techniques you usually start with an empty List or String outside the loop, then build it during the loop. For example
#! /usr/bin/env python3
new_list = []
new_string = ""
for x in range(10):
 new_list.append(x)
 new_string = new_string + "Hello "
print (new_list)
print (new_string)
String concatenation is so common that Python has spent a lot of time and effort making this better and faster. There a lots of ways to do this in a very efficient manner (but which might be harder to understand), but I will leave it to you to find these.

String Sequences
You now need to bring into your folder the lcd library that you made during the practical. So far that library can display a word on the screen and can display a word and the light at the same time. Now we want the library to display a sentence, one word at a time. To do this we need to put the sentence into a List and use a for loop to display each element of the List. Let’s work on the second part of the problem first.

Create a new file and import your lcd library. Now type in the following:

sentence = ["This", "is", "a", "sentence. "]
while True:
 for word in sentence:
 lcd(word)
If this does not work, Did you remember to import your lcd library functions? What did you call your functions?
Already I am sure that you can see how this could be improved by writing another sequence function. However the problem at the moment is with the sentence as a List. (I will leave the issue of the full stop not displaying at the moment).
Writing sentences as Lists is a painful way to do this. Surely Python has an easier way to create a List for us from a sentence. It would be much better if we could just do this.

sentence = "This is a sentence. "
while True:
 for word in sentence:
 lcd(word)
This actually works, but probably not the way you expected. Remember back to what for loops actually do, they move through sequences and I mention they actually move through Iterable Structures. A List is an Iterable Structure, but so is a String. In Python there a many of these so there are many ways to use for loops. Python is also very good at converting from one structure to the other when you need it. One of the most common problems in programming is moving through sentences and Python has an easy solution, it has a way of changing the String into a List based upon a defined deliminator, like a white space for sentences or a comma for excel files.
It does this by using the Strings’ internal methods, there a many of them but the one we want is the method split. split is a function and you must define the deliminator, however if you leave it out it defaults to whitespace. If you think about it you should know how this is done, we have actually done this ourselves already.
So this means the actual code we need is:
sentence = "This is a sentence. "
while True:
 for word in sentence.split():
 lcd(word)
This is so useful that it is worth making this a library function in the lcd library, but that is a task for your practical.
Displaying two words at once
I now want to move onto another problem. It’s nice that we are displaying one word at a time from a sentence, however the lcd display on Zumo has two lines and it would be better to use both of them. To do this we need to solve two problems, firstly how to get to the second line and secondly how to get to two words in the sequence. Let’s solve the second problem first.
Python’s Lists have a way to access the individual members of the List. Image we had a sentence
wolf = "What’s the time"
You know that wolf is a String and that Strings are a iterable structure and you can get to each letter using a for loop. Python also has a way to access each individual element or small sequences of elements since it automatically provides an index to each element within a List, actually it provides two indexes, depending on whether you are starting at the beginning or the end. The indexes work like this

	W
	h
	a
	t
	‘
	s
	
	t
	h
	e
	
	t
	i
	m
	e
	

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	

	-15
	-14
	-13
	-12
	-11
	-10
	-9
	-8
	-7
	-6
	-5
	-4
	-3
	-2
	-1
	

So to get to the t in What’s you use the either of the following code:
wolf[3]
wolf[-12]
The name of the structure and inside the square brackets the index you are trying to get to. If you want as small section of the structure you need to provide two numbers, the starting number, a colon, the ending number(which must be one more than the actual index). So to get the the you need
wolf[7:10]
wolf[-8:-5]
wolf[7:-5]
wolf[-8:10]
This process is so common it is called Slicing and is one of the features that make Python so popular. Slicing also has a third number which can be used, but I will leave that for you to look up how that works.
For our problem we don’t need slicing but we do need to get to the index of our sentence once it is split up.
As we move through the sequence we want to display the elements at index 1, 2 then at 2, 3, then at 3, 4 etc until we reach the end of the string. Python will throw an error if we try to use an index that is too large.
Let’s build this solution first in pure Python and then move it onto the Zumo.

Create a new file and type in the following:

quote="Don't worry about the world coming to an end today. It is already tomorrow in Australia"
outcome = quote.split()
print(outcome)
If you run this you will see we have a List with each element in the List a word from the quote.
Now add in the following
for out in outcome:
 print(out)
This prints each word down the page. We are almost there, we just need to print the next word along side. To do this we need to get to the index of each word, not just the word itself, out of the List outcome. This is so common that Python has an easy way to do this, using the function enumerate which returns two things, the current index and the current element, we need to capture both. Change the for loop to:

for index, out in enumerate(outcome):
 print(out, index)
You now see each word and its index next to it.
We can now change this line so it prints the next word using the following code
 print(out, outcome[index+1])
This works but will throw an error on the last run through since the index runs out and we can’t add one to it. To solve this problem we need to know how long the List is and only print this line when there is still some index left. Python has a way to work out the length of a List with the function len. The code to do this is
len(outcome)
so we need to capture this in a variable and then use that information to check whether index is getting too big. This is done using an if statement, we used these in Session 1. So our code is
quote="Don't worry about the world coming to an end today. It is already tomorrow in Australia"
outcome = quote.split()
[bookmark: _GoBack]length = len(outcome)
for index, out in enumerate(outcome):
 if index+1<length:
 print(out, outcome[index+1])
This works but does not print the very last element by itself, so we need to add one last line outside of the for loop.
print(outcome[-1])
This is such a useful piece of code I am sure that we will use it often so it should be a function in the lcd library. However before we do this we need one last piece of information.
Zumo LCD
In our PiZumo library you have seen two functions, lcdClear and lcdPrint. There is another function which specifies exactly where the print will start. That function is
lcdGotoXY(col, row)
It requires two numbers, one for col (which stands for column) and one for row. There are only two rows the first row being 0 and the second row being 1. There are 8 columns, starting from 0 and going through to 7 so the command
lcdGotoXY(2,1)
will move the lcd cursor to the second position on the second row and the lcdPrint will start from there.
You are now ready for your practical. We have covered a lot of ground here and if you want more practise there are practical exercise available around String slicing and concatenation on the website.

Glossary
	Concepts
	Meaning

	Command
	These are key words used by the language that perform a function for the language. It is also possible to create your own commands to be used in your programming. Most languages have libraries of commands that have already been built for you to use as well as those you build yourself.

	Functions
	The most common way to create your own commands. These can accept data, process data in some way and can return the changed data to be used in other parts of the program. In a well structured program almost everything is done in small single purpose functions.

	Arguments
	These are bits of data that are used by functions, so that they have information to work with.

	Parameters
	These are the place holder variables that are used in function definitions. These are replaced by the arguments that are used when the function is run. Often the two terms are used interchangeably.
In Python Parameters can be given a default value, which means that an argument is not required when the function is called.

	String
	Data type, String refers to ordinary words.

	Integers
	Data type, int refers to whole numbers.

	Float
	Data type, Float used for decimals, but they are not accurate.

	Variable
	Way of representing data for the program to work on.

	Libraries
	These contain commands that have been developed and tested and are ready to use. Many of the libraries have been written by the people who originally developed the language while other libraries have been developed by companies or individuals that use the language (Google, Yahoo, Apache etc have all developed extensive language libraries for a wide variety of languages). You can also develop your own library of commands.

	Assignment
	Uses = to give a variable name a value

	Expression
	An operation which must be true or false

	Comments
	These are notes for people reading the code.

	Array
	Structure used to group data together, in Python there are many types including List, Set, Tuple, Dictionary etc.

	Object methods
	All Python objects have built in methods to make them more useful. These include

	String concatenation
	Adding to strings together to make one string. This can be done using the + sign. Python also has some more efficient methods available.

	Slicing
	Python methods for getting inside sequences

	
	

	Python Commands
	Meaning

	print
	Python function which will show the data on the console

	def
	Python key word used to define your own functions

	input
	Python function which gets data from the keyboard

	int
	Python function which changes a String to its Integer value

	if
	Python keyword used to build decision making structures, must be followed by an expression which is either true or false

	from … import
	Python keywords used to bring in Python objects and function from other files for use in your current file.

	while
	Python keyword which creates a loop based upon the expression

	True
	Python keyword which always evaluates to true, there is also a keyword False.

	for … in
	Python keyword which creates a loop based upon the iterable structure that it is given. in is also a Python keyword to look inside Arrays and can be used in expressions

	range
	Python function which is used to create a sequence of numbers

	.append
	Python method which adds an element to a list

	.split
	Python method which changes a string to a list

	enumerate
	Python function which is used in for loops to provide both the data and the index of the data

	len
	Python function which finds the length of a sequence

	
	

	Best Practise
	

	DRY Principle
	Don’t Repeat Yourself. When you need the same code in two places make a function, never copy and paste. This way if there are errors they will only be in one place. Makes you code much easier to maintain and change later on.

Robotics ICTPRG301- Session 3	Page | 8

