
	[image:]
	Unit Outline

	
	Office of Learning and Teaching
Version 12
December 2016		Course Registration

Purpose
The Unit Outline provides you with information on how the training and assessment for this unit will be conducted.

1. Unit and VET Lecturer Details

	Unit Code
	ICTPRG301

	Unit Title
	Apply introductory programming techniques

	VET Lecturer Name
	

	Location
	

	Phone
	

	Email
	

	Application
	This unit describes the skills and knowledge required to create simple applications or games. It applies to individuals with responsibility for creating applications or games and includes creating code, using programming standards, testing, and debugging. No licensing, legislative or certification requirements apply to this unit at the time of publication.

	Attendance Details
	Attendance is recommended, participation may also include work experience and/or industry participation.

	Pre-requisite
	Nil

	Co-requisite
	Nil

	Work Health and Safety Instructions
	It is a requirement when on campus that you follow the WH&S guidelines of the University found in the VET Student Guide.
(http://www.cdu.edu.au/sites/default/files/mace/docs/VET-student-guide.pdf)

It is expected that you will adhere to the Workplace Work Health and Safety policies and when working in the office environment ergonomic principles must be observed.

2. Student Information

	Student Support
	Student Administration and Equity Services provide general counselling; complaint resolution; equity information, assistance and support; disability support; indigenous academic support; international student support; language, literacy and numeracy support; student accommodation.

More information is available at:
Student Services (http://www.cdu.edu.au/studentservices/) or
VET Student Guide.
(http://www.cdu.edu.au/sites/default/files/mace/docs/VET-student-guide.pdf)

	Recognition of Prior Learning (RPL)
	If you believe you already have the knowledge and skills to be able to demonstrate competence in this unit speak with your VET Lecturer as you may be able to apply for Recognition of Prior Learning (RPL).
(http://www.cdu.edu.au/prospectivestudents/studyingatcdu/pathwaystostudy-rpl)

	Reasonable Adjustments
	In the event that you have difficulty understanding or completing the training or assessment due to a disability, language barrier or other difficulties, notify your lecturer as soon as possible. You will be able to discuss with your VET lecturer ways to make reasonable adjustments to the training and assessment process. For example, it may be possible to complete a written assessment verbally, use assistive technologies or have the environment and resources adapted.

	Academic Appeals and Complaints Resolution
	If you require an extension of time, special consideration, or appeal against a final result in a unit, you should speak directly to your VET Lecturer. If you are unable to satisfactorily resolve your concern you should refer to the CDU Student Handbook for the process and/or contact:
Student Administration and Equity Services (http://www.cdu.edu.au/saes) or
Complaints Management Unit. (http://www.cdu.edu.au/strategicservices-governance/complaints).

3. Unit Outcomes

On completion of this unit you will be able to:

	ELEMENT
	PERFORMANCE CRITERIA

	Elements describe the essential outcomes.
	Performance criteria describe the performance needed to demonstrate achievement of the element.

	1. Apply language syntax and layout
	1.1 Apply basic language syntax rules
1.2 Use language data types, operators, and expressions to create a clear and concise code
1.3 Apply the variables and variable scope
1.4 Use the library functions in a program
1.5 Use commenting to create a clear meaning to the code

	2. Apply control structures
	2.1 Apply the language syntax for sequence, selection and iteration constructs
2.2 Use logical operators to create expressions for use in selection and iteration constructs

	3. Code using standard algorithms
	3.1 Develop algorithms that use the sequence, selection and iteration constructs
3.2 Create and use arrays
3.3 Code the standard sequential access algorithms, for reading and writing text files, including end-of-file detection loops
3.4 Apply string manipulation

	4. Test the code
	4.1 Use debugging techniques to trace code execution and examine the variable contents to detect, and correct, errors
4.2 Create and conduct simple tests, to confirm that the code meets the design specification
4.3 Document the tests performed and results achieved

	5. Create an application or game
	5.1 Design an algorithm in response to basic program specifications
5.2 Develop the application or game to meet the program specification
5.3 Test and confirm that the application, or game, meets the initial specifications

You will demonstrate this by showing that you can:

Performance Evidence
Evidence of the ability to:
· apply programming language syntax, sequence, selection and iteration control structures to the development of an application, or game
· produce an application, or game, that is designed and built from the program specifications
· confirm that the created application, or game, meets the original program specifications, and obtain user sign-off for the completed program.

Note: If a specific volume or frequency is not stated, then evidence must be provided at least once.

[bookmark: O_671321]Knowledge Evidence
To complete the unit requirements safely and effectively, the individual must:
· identify and describe common games programming languages, their syntax, and command structure
· describe the development of small-sized applications or games

4. Unit Delivery Plan

	Session name, date and time or duration
	Learning topic/activity

	Resources required by students
	Assessment task

	2 Hour Theory

	Introduce the following concepts with examples
Print to console statements 1.1
Basic Syntax, functions, error messages 1.1
Input from keyboard to console 1.1
Naming conventions, variable types int, float, String 1.1, 1.2, 1.3
Logic statements if 2.1, 2.2
	Raspberry Pi with IDE installed
All training materials and support materials can be found at https://roboticpython.brambling.cdu.edu.au/

	

	2 Hour Practical

	Introduce the following concepts with examples
Agile
Scrum
Sprint 5.1, 5.2, 5.3
	Raspberry Pi with IDE installed
	
Sprint Documents
Pair

	2 Hour Theory

	Introduce the following concepts with examples
Library import 1.4
Function parameter
arguments, general functions 1.1, 1.2, 3.1
Loops while, for 2.1, 2.2, 3.1
Creating own libraries 1.4
Refactoring 5.1
Comments 1.5
Tests 4.2, 4.3
	Raspberry Pi with IDE installed
Robotic controller with an LED light attached
	

	2 Hour Practical

	Scrum
Sprint 5.1, 5.2, 5.3
	Raspberry Pi with IDE installed
Robotic controller with an LED light attached
	
Sprint Documents

	2 Hour Theory

	Introduce the following concepts with examples
List, Modulo 2,1, 2,2, 3.1, 3.2
DRY principle 1.2
Light sequence, class activity1, 2, 3, 4, 5
How to write a program 1, 2, 3, 4, 5

	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
	

	2 Hour Practical

	Scum
Sprint 5.1, 5.2, 5.3
	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
	
Sprint Documents

	2 Hour Theory

	Introduce the following concepts with examples
Vehicle movement 1, 2, 3, 4, 5
Refactoring 5.1
Documentation 1,5, 4.3, 5.1, 5.3
Figure of 8 car movement
	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
Controller mounted on a vehicle capable of controlled movement
	

	2 Hour Practical

	Scrum
Sprint 5.1, 5.2, 5.3
	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
Controller mounted on a vehicle capable of controlled movement
	
Sprint Documents

	2 Hour Theory

	Introduce the following concepts with examples
Reading and writing to text files3.1, 3.2, 3.3, 3.4
Built in functions on data types 1.1, 1.2, 1.3, 1.4, 2.2
Designing algorithms 1,5, 3.1, 4.2
Testing 4.3, 5.3
	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
Controller mounted on a vehicle capable of controlled movement
Vehicle controller has motion sensor attached
	

	2 Hour Practical

	Scrum
Sprint 5.1, 5.2, 5.3
	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
Controller mounted on a vehicle capable of controlled movement
	
Sprint Documents
[bookmark: _GoBack]

	2 Hour Theory

	Introduce the following concepts with examples
Reading a sensor 1, 2, 3, 4, 5
Debugging and testing 4.1, 4.3, 5.3
Designing algorithms 1.5, 3.1, 4.2, 5.2
	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
Controller mounted on a vehicle capable of controlled movement
	Part 1 A
Questions

	2 Hour Practical

	Scrum
Sprint 5.1, 5.2, 5.3
	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
Controller mounted on a vehicle capable of controlled movement
Vehicle controller has motion sensor attached
	
Sprint Documents

	4X2 Hour Practical
	Scrum
Sprint 5.1, 5.2, 5.3
	Raspberry Pi with IDE installed
Robotic controller with multiple LED lights attached
Controller mounted on a vehicle capable of controlled movement
Vehicle controller has motion sensor attached
	
Sprint Documents
Part 1B Capstone Project

You will be provided on enrolment with a timetable/ schedule or training plan which contains specific dates, times and locations of the delivery for this unit as well as information about how changes to the timetable will be communicated.

5. Assessment Summary

	Assessment task number
	Assessment task name
	Resources required by students
	Due date
	Number of assessment attempts allowed

	1 Part A
	Short Answer Questions
	USB
Computer
MS Office
Internet Access
Printer
	Two weeks after final session
	2

	1 Part B
	Project
	Zumo robot
Raspberry Pi
USB
Computer
MS Office
Internet Access
Printer
	Two weeks after final session
	2

	1 Part C
	Assessors Checklist
Completed during practicals
	
	
	

Additional information about the assessment tasks will be provided to you by you lecturer in a Student Assessment Guide for this unit. The assessment tasks have been mapped to the Training Package units of competency and meet all the elements, performance and knowledge evidence and assessment conditions. More information on this unit can be found at Training.gov.au. (http://training.gov.au/Home/Tga).

If you cannot complete an assessment task by the due date you must make alternative arrangements with your VET Lecturer before the due date.

Feedback will be provided by your VET lecturer on each assessment task. The final result for this unit will be recorded as Competency Achieved (CA), Not Yet Competent (NYC) or Insufficient Participation (IP). The results for individual assessment tasks will be recorded as Successful (S) and Unsuccessful (U). If you are deemed Unsuccessful for a task you will be advised by your VET lecturer and given the opportunity to resubmit.

Remember that your VET lecturer is your most important contact for information about assessment. Contact details are listed on the first page.

	Unit Outline
Unit code/title	ICTPRG301 Apply introductory programming techniques
	Current issue date
	Version No
	Page No

	
	30/1/18
	2018.1
	1

	Unit Outline
Unit code/title	ICTPRG301 Apply introductory programming techniques
	Current issue date
	Version No
	Page No

	
	
	
	7

image1.jpeg
E= CHARLES

@ DARWIN
“ UNIVERSITY

